Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

IC 3735


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The ACS Virgo Cluster Survey. VIII. The Nuclei of Early-Type Galaxies
The ACS Virgo Cluster Survey is a Hubble Space Telescope program toobtain high-resolution imaging in widely separated bandpasses (F475W~gand F850LP~z) for 100 early-type members of the Virgo Cluster, spanninga range of ~460 in blue luminosity. We use this large, homogenous dataset to examine the innermost structure of these galaxies and tocharacterize the properties of their compact central nuclei. We presenta sharp upward revision in the frequency of nucleation in early-typegalaxies brighter than MB~-15 (66%<~fn<~82%)and show that ground-based surveys underestimated the number of nucleidue to surface brightness selection effects, limited sensitivity andpoor spatial resolution. We speculate that previously reported claimsthat nucleated dwarfs are more concentrated toward the center of Virgothan their nonnucleated counterparts may be an artifact of theseselection effects. There is no clear evidence from the properties of thenuclei, or from the overall incidence of nucleation, for a change atMB~-17.6, the traditional dividing point between dwarf andgiant galaxies. There does, however, appear to be a fundamentaltransition at MB~-20.5, in the sense that the brighter,``core-Sérsic'' galaxies lack resolved (stellar) nuclei. A searchfor nuclei that may be offset from the photocenters of their hostgalaxies reveals only five candidates with displacements of more than0.5", all of which are in dwarf galaxies. In each case, however, theevidence suggests that these ``nuclei'' are, in fact, globular clustersprojected close to the galaxy photocenter. Working from a sample of 51galaxies with prominent nuclei, we find a median half-light radius of=4.2 pc, with the sizes of individual nucleiranging from 62 pc down to <=2 pc (i.e., unresolved in our images) inabout a half-dozen cases. Excluding these unresolved objects, the nucleisizes are found to depend on nuclear luminosity according to therelation rh L0.50+/-0.03. Because the largemajority of nuclei are resolved, we can rule out low-level AGNs as anexplanation for the central luminosity excess in almost all cases. Onaverage, the nuclei are ~3.5 mag brighter than a typical globularcluster. Based on their broadband colors, the nuclei appear to have oldto intermediate age stellar populations. The colors of the nuclei ingalaxies fainter than MB~-17.6 are tightly correlated withtheir luminosities, and less so with the luminosities of their hostgalaxies, suggesting that their chemical enrichment histories weregoverned by local or internal factors. Comparing the nuclei to the``nuclear clusters'' found in late-type spiral galaxies reveals a closematch in terms of size, luminosity, and overall frequency. A formationmechanism that is rather insensitive to the detailed properties of thehost galaxy properties is required to explain this ubiquity andhomogeneity. The mean of the frequency function for thenucleus-to-galaxy luminosity ratio in our nucleated galaxies,=-2.49+/-0.09 dex (σ=0.59+/-0.10), isindistinguishable from that of the SBH-to-bulge mass ratio,=-2.61+/-0.07dex (σ=0.45+/-0.09), calculated in 23 early-type galaxies withdetected supermassive black holes (SBHs). We argue that the compactstellar nuclei found in many of our program galaxies are the low-masscounterparts of the SBHs detected in the bright galaxies. If thisinterpretation is correct, then one should think in terms of ``centralmassive objects''-either SBHs or compact stellar nuclei-that accompanythe formation of almost all early-type galaxies and contain a meanfraction ~0.3% of the total bulge mass. In this view, SBHs would be thedominant formation mode above MB~-20.5.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS5-26555.

The ACS Virgo Cluster Survey. IX. The Color Distributions of Globular Cluster Systems in Early-Type Galaxies
We present the color distributions of globular cluster (GC) systems for100 early-type galaxies observed in the ACS Virgo Cluster Survey, thedeepest and most homogeneous survey of this kind to date. On average,galaxies at all luminosities in our study (-22

Virgo Cluster Early-Type Dwarf Galaxies with the Sloan Digital Sky Survey. I. On the Possible Disk Nature of Bright Early-Type Dwarfs
We present a systematic search for disk features in 476 Virgo Clusterearly-type dwarf (dE) galaxies. This is the first such study of analmost-complete, statistically significant dE sample, which includes allcertain or possible cluster members with mB<=18 that arecovered by the optical imaging data of the Sloan Digital Sky Survey DataRelease 4. Disk features (spiral arms, edge-on disks, or bars) wereidentified by applying unsharp masks to a combined image from threebands (g, r, and i), as well as by subtracting the axisymmetric lightdistribution of each galaxy from that image. Fourteen objects areunambiguous identifications of disks, 10 objects show ``probable disk''features, and 17 objects show ``possible disk'' features. The numberfraction of these galaxies, for which we introduce the term ``dEdi,''reaches more than 50% at the bright end of the dE population anddecreases to less than 5% for magnitudes mB>16. Althoughpart of this observed decline might be due to the lower signal-to-noiseratio at fainter magnitudes, we show that it cannot be caused solely bythe limitations of our detection method. The luminosity function of ourfull dE sample can be explained by a superposition of dEdis and ordinarydEs, strongly suggesting that dEdis are a distinct type of galaxy. Thisis supported by the projected spatial distribution: dEdis show basicallyno clustering and roughly follow the spatial distribution of spirals andirregulars, whereas ordinary dEs are distributed similarly to thestrongly clustered E/S0 galaxies. While the flattening distribution ofordinary dEs is typical for spheroidal objects, the distribution ofdEdis is significantly different and agrees with their being flat oblateobjects. We therefore conclude that the dEdis are not spheroidalgalaxies that just have an embedded disk component but are instead apopulation of genuine disk galaxies. Several dEdis display well-definedspiral arms with grand-design features that clearly differ from theflocculent, open arms typical for late-type spirals that have frequentlybeen proposed as progenitors of dEs. This raises the question of whatprocess is able to create such spiral arms-with pitch angles like thoseof Sab/Sb galaxies-in bulgeless dwarf galaxies.

The ACS Virgo Cluster Survey. X. Half-Light Radii of Globular Clusters in Early-Type Galaxies: Environmental Dependencies and a Standard Ruler for Distance Estimation
We have measured half-light radii, rh, for thousands ofglobular clusters (GCs) belonging to the 100 early-type galaxiesobserved in the ACS Virgo Cluster Survey and the elliptical galaxy NGC4697. An analysis of the dependencies of the measured half-light radiion both the properties of the GCs themselves and their host galaxiesreveals that, in analogy with GCs in the Galaxy but in a milder fashion,the average half-light radius increases with increasing galactocentricdistance or, alternatively, with decreasing galaxy surface brightness.For the first time, we find that the average half-light radius decreaseswith the host galaxy color. We also show that there is no evidence for avariation of rh with the luminosity of the GCs. Finally, wefind in agreement with previous observations that the averagerh depends on the color of GCs, with red GCs being ~17%smaller than their blue counterparts. We show that this difference isprobably a consequence of an intrinsic mechanism, rather than projectioneffects, and that it is in good agreement with the mechanism proposed byJordán. We discuss these findings in light of two simple picturesfor the origin of the rh of GCs and show that both lead to abehavior in rough agreement with the observations. After accounting forthe dependencies on galaxy color, galactocentric radius, and underlyingsurface brightness, we show that the average GC half-light radii can be successfully used as a standard ruler fordistance estimation. We outline the methodology, provide a calibrationfor its use, and discuss the prospects for this distance estimator withfuture observing facilities. We find =2.7+/-0.35 pcfor GCs with (g-z)=1.2 mag in a galaxy with color(g-z)gal=1.5 mag and at an underlying surface z-bandbrightness of μz=21 mag arcsec-2. Using thistechnique, we place an upper limit of 3.4 Mpc on the 1 σline-of-sight depth of the Virgo Cluster. Finally, we examine the formof the rh distribution for our sample galaxies and provide ananalytic expression that successfully describes this distribution.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

A Comparison of Surface Brightness Profiles for Ultracompact Dwarfs and Dwarf Elliptical Nuclei: Implications for the ``Threshing'' Scenario
Using imaging from the Hubble Space Telescope, we derive surfacebrightness profiles for ultracompact dwarfs in the Fornax Cluster andfor the nuclei of dwarf elliptical galaxies in the Virgo Cluster.Ultracompact dwarfs are more extended and have higher surfacebrightnesses than typical dwarf nuclei, while the luminosities, colors,and sizes of the nuclei are closer to those of Galactic globularclusters. This calls into question the production of ultracompact dwarfsvia ``threshing,'' whereby the lower surface brightness envelope of adwarf elliptical galaxy is removed by tidal processes, leaving behind abare nucleus. Threshing may still be a viable model if the relativelybright Fornax ultracompact dwarfs considered here are descended fromdwarf elliptical galaxies whose nuclei are at the upper end of theirluminosity and size distributions.

The ACS Virgo Cluster Survey. II. Data Reduction Procedures
The ACS Virgo Cluster Survey is a large program to carry out multicolorimaging of 100 early-type members of the Virgo Cluster using theAdvanced Camera for Surveys (ACS) on the Hubble Space Telescope. DeepF475W and F850LP images (~SDSS g and z) are being used to study thecentral regions of the program galaxies, their globular cluster systems,and the three-dimensional structure of Virgo itself. In this paper, wedescribe in detail the data reduction procedures used for the survey,including image registration, drizzling strategies, the computation ofweight images, object detection, the identification of globular clustercandidates, and the measurement of their photometric and structuralparameters.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

The ACS Virgo Cluster Survey. I. Introduction to the Survey
The Virgo Cluster is the dominant mass concentration in the LocalSupercluster and the largest collection of elliptical and lenticulargalaxies in the nearby universe. In this paper, we present anintroduction to the ACS Virgo Cluster Survey: a program to image, in theF475W and F850LP bandpasses (~Sloan g and z), 100 early-type galaxies inthe Virgo Cluster using the Advanced Camera for Surveys on the HubbleSpace Telescope. We describe the selection of the program galaxies andtheir ensemble properties, the choice of filters, the field placementand orientation, the limiting magnitudes of the survey, coordinatedparallel observations of 100 ``intergalactic'' fields with WFPC2, andsupporting ground-based spectroscopic observations of the programgalaxies. In terms of depth, spatial resolution, sample size, andhomogeneity, this represents the most comprehensive imaging survey todate of early-type galaxies in a cluster environment. We brieflydescribe the main scientific goals of the survey, which include themeasurement of luminosities, metallicities, ages, and structuralparameters for the many thousands of globular clusters associated withthese galaxies, a high-resolution isophotal analysis of galaxiesspanning a factor of ~450 in luminosity and sharing a commonenvironment, the measurement of accurate distances for the full sampleof galaxies using the method of surface brightness fluctuations, and adetermination of the three-dimensional structure of Virgo itself.ID="FN1"> 1Based on observations with the NASA/ESA Hubble SpaceTelescope obtained at the Space Telescope Science Institute, which isoperated by the association of Universities for Research in Astronomy,Inc., under NASA contract NAS 5-26555.

Stellar Populations of Dwarf Elliptical Galaxies: UBVRI Photometry of Dwarf Elliptical Galaxies in the Virgo Cluster
We present UBVRI surface photometry for 16 dwarf elliptical galaxies inthe Virgo Cluster with previously measured kinematic properties. Theglobal optical colors are red, with median values for the sample of0.24+/-0.03 in U-B, 0.77+/-0.02 in B-V, and 1.02+/-0.03 in V-I. Werecover the well-known color-magnitude relation for cluster galaxies butfind no significant difference in dominant stellar population betweenrotating and nonrotating dwarf elliptical galaxies; the average age ofthe dominant stellar population is 5-7 Gyr in all 16 galaxies in thissample. Analysis of optical spectra confirm these age estimates andindicate Fe and Mg abundances in the range of 1/20 to one-third ofsolar, as expected for low-luminosity galaxies. Based on Lick indicesand simple stellar population models, the derived [α/Fe] ratiosare subsolar to solar, indicating a more gradual chemical enrichmenthistory for dE's as compared with giant elliptical galaxies in the VirgoCluster. These observations confirm the marked difference in stellarpopulation and stellar distribution between dwarf and giant ellipticalgalaxies and further substantiate the need for alternative evolutionaryscenarios for the lowest mass cluster galaxies. We argue that it islikely that several different physical mechanisms played a significantrole in the production of the Virgo Cluster dE galaxies including insitu formation, infall of dE's that were once part of Local Groupanalogs, and transformation of dwarf irregular galaxies by the clusterenvironment. The observations support the hypothesis that a largefraction of the Virgo Cluster dE's are formed by ram pressure strippingof gas from infalling dI's.Based on observations with the VATT: the Alice P. Lennon Telescope andthe Thomas J. Bannan Astrophysics Facility.

Rotationally Supported Virgo Cluster Dwarf Elliptical Galaxies: Stripped Dwarf Irregular Galaxies?
New observations of 16 dwarf elliptical galaxies (dEs) in the VirgoCluster indicate that at least seven dEs have significant velocitygradients along their optical major axis, with typical rotationamplitudes of 20-30 km s-1. Of the remaining nine galaxies inthis sample, six have velocity gradients of less than 20 kms-1 kpc-1, while the other three observations hadtoo low a signal-to-noise ratio to determine an accurate velocitygradient. Typical velocity dispersions for these galaxies are ~44+/-5 kms-1, indicating that rotation can be a significant componentof the stellar dynamics of Virgo dEs. When corrected for the limitedspatial extent of the spectral data, the rotation amplitudes of therotating dEs are comparable to those of similar-brightness dwarfirregular galaxies (dIs). Evidence of a relationship between therotation amplitude and galaxy luminosity is found and, in fact, agreeswell with the Tully-Fisher relation. The similarity in the scalingrelations of dIs and dEs implies that it is unlikely that dEs evolvefrom significantly more luminous galaxies. These observations reaffirmthe possibility that some cluster dEs may be formed when the neutralgaseous medium is stripped from dIs in the cluster environment. Wehypothesize that several different mechanisms are involved in thecreation of the overall population of dEs and that stripping ofinfalling dIs may be the dominant process in the creation of dEs inclusters like Virgo.

Galaxy Populations and Evolution in Clusters. IV. Deep H I Observations of Dwarf Elliptical Galaxies in the Virgo Cluster
In this paper we present deep Arecibo H I and WIYN optical observationsof Virgo Cluster dwarf elliptical galaxies. Based on this data we arguethat a significant fraction of low-mass galaxies in the Virgo Clusterrecently underwent evolution. Our new observations consist of H I 21 cmline observations for 22 classified dE galaxies with optical radialvelocities consistent with membership in the Virgo Cluster. Clustermembers VCC 390 and VCC 1713 are detected with H I massesMHI=6×107 and 8×107Msolar, respectively, while MHI values in theremaining 20 dE galaxies have upper limits as low as~5×105 Msolar. We combine our results withthose for 26 other Virgo Cluster dE galaxies with H I observations inthe literature, seven of which have H I detection claims. New opticalimages from the WIYN telescope of five of these H I-detected dEgalaxies, along with archival data, suggest that seven of the claimeddetections are true H I detections, yielding a ~15% detection rate.These H I-detected, classified dE galaxies are preferentially locatednear the periphery of the Virgo Cluster. Three Virgo dE galaxies haveobserved H I velocity widths greater than 200 km s-1,possibly indicating the presence of a large dark matter content ortransient extended H I. We discuss the possible origins of these objectsand argue that they originate from field galaxies accreted onto highangular momentum orbits by Virgo in the last few Gyr. As a result ofthis, we argue, these galaxies are slowly transformed within the clusterby gradual gas-stripping processes, associated truncation of starformation, and passive fading of stellar populations. Low-mass,early-type cluster galaxies are therefore currently being produced asthe product of cluster environmental effects. We utilize our results ina simple model to estimate the recent (past 1-3 Gyr) average massaccretion rate into the Virgo Cluster, deriving a value of M~50Msolar yr-1.

Companions of Bright Barred Shapley-Ames Galaxies
Companion galaxy environment for a subset of 78 bright and nearby barredgalaxies from the Shapley-Ames Catalog is presented. Among the spiralbarred galaxies, there are Seyfert galaxies, galaxies with circumnuclearstructures, galaxies not associated with any large-scale galaxy cloudstructure, galaxies with peculiar disk morphology (crooked arms), andgalaxies with normal disk morphology; the list includes all Hubbletypes. The companion galaxy list includes the number of companiongalaxies within 20 diameters, their Hubble type, and projectedseparation distance. In addition, the companion environment was searchedfor four known active spiral galaxies, three of them are Seyfertgalaxies, namely, NGC 1068, NGC 1097, and NGC 5548, and one is astarburst galaxy, M82. Among the results obtained, it is noted that theonly spiral barred galaxy classified as Seyfert 1 in our list has nocompanions within a projected distance of 20 diameters; six out of 10Seyfert 2 bar galaxies have no companions within 10 diameters, six outof 10 Seyfert 2 galaxies have one or more companions at projectedseparation distances between 10 and 20 diameters; six out of 12 galaxieswith circumnuclear structures have two or more companions within 20diameters.

Galaxy Populations and Evolution in Clusters. I. Dynamics and the Origin of Low-Mass Galaxies in the Virgo Cluster
Early-type dwarfs are the most common galaxy in the local universe, yettheir origin and evolution remain a mystery. Various cosmologicalscenarios predict that dwarf-like galaxies in dense areas are the firstto form and hence should be the oldest stellar systems in clusters. Byusing radial velocities of early-type dwarfs in the Virgo cluster wedemonstrate that these galaxies are not an old cluster population buthave signatures of production from the infall of field galaxies.Evidence of this includes the combined large dispersions andsubstructure in spatial and kinematic distributions for Virgo early-typedwarfs and a velocity dispersion ratio with giant ellipticals expectedfor virialized and accreted populations. We also argue that thesegalaxies cannot originate from accreted field dwarfs, but must havephysically evolved from a precursor population, of different morphology,that fell into Virgo some time in the past.

Detailed Surface Photometry of Dwarf Elliptical and Dwarf S0 Galaxies in the Virgo Cluster
We analyze new V-band images of 14 dwarf S0 galaxies and 10 dwarfelliptical galaxies in the Virgo Cluster, in combination with R-bandimages of 70 dwarf elliptical galaxies from an earlier paper. We computethe intensity-weighted mean ellipticity, the mean deviations fromelliptical isophotes, and a newly defined parameter to measure isophotaltwists. We also fit each major-axis profile to a power lawSigma(a)~exp[-(a/a_s)^n], where n is allowed to vary. Consistent withother studies of the Virgo dwarf ellipticals, we find that the profileshapes for the entire sample is strongly peaked near n=1 (exponentialprofiles) and that no galaxies have n=1/4 (de Vaucouleurs profile). Thefaintest galaxies all have nearly exponential profiles, while thebrighter ones on average have n<1. The correlation betweenellipticity and the boxy/disky parameter is similar to that of largeelliptical galaxies, suggesting that dwarfs may also be divided into twogroups with differing internal dynamics. The Virgo dEs also show agreater degree of isophotal twisting than more luminous ellipticalgalaxies. There does not seem to be any combination of parameters fromthe surface photometry that statistically correlates with the dE/dS0designation: in particular, the dS0 galaxies do not, on average, havemore pointed (disky) isophotes than the dEs.

An image database. II. Catalogue between δ=-30deg and δ=70deg.
A preliminary list of 68.040 galaxies was built from extraction of35.841 digitized images of the Palomar Sky Survey (Paper I). For eachgalaxy, the basic parameters are obtained: coordinates, diameter, axisratio, total magnitude, position angle. On this preliminary list, weapply severe selection rules to get a catalog of 28.000 galaxies, wellidentified and well documented. For each parameter, a comparison is madewith standard measurements. The accuracy of the raw photometricparameters is quite good despite of the simplicity of the method.Without any local correction, the standard error on the total magnitudeis about 0.5 magnitude up to a total magnitude of B_T_=17. Significantsecondary effects are detected concerning the magnitudes: distance toplate center effect and air-mass effect.

HI-observations of galaxies in the Virgo cluster of galaxies. I - The data
New H I-data for a large number of bright galaxies inside the 10 degradius area of the Virgo cluster of galaxies have been obtained with the100 m radiotelescope at Effelsberg. A total of 234 galaxies was observedfor the first time. Among them, 53 have been detected providing newaccurate radial velocities. Data from the literature have been compiled.Together with the new data, they form a (nearly homogeneous) set of H Iobservations for more than 450 galaxies.

Studies of the Virgo Cluster. II - A catalog of 2096 galaxies in the Virgo Cluster area.
The present catalog of 2096 galaxies within an area of about 140 sq degapproximately centered on the Virgo cluster should be an essentiallycomplete listing of all certain and possible cluster members,independent of morphological type. Cluster membership is essentiallydecided by galaxy morphology; for giants and the rare class of highsurface brightness dwarfs, membership rests on velocity data. While 1277of the catalog entries are considered members of the Virgo cluster, 574are possible members and 245 appear to be background Zwicky galaxies.Major-to-minor axis ratios are given for all galaxies brighter than B(T)= 18, as well as for many fainter ones.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Coma Berenices
Right ascension:12h45m20.40s
Declination:+13°41'33.0"
Aparent dimensions:1.202′ × 0.871′

Catalogs and designations:
Proper Names   (Edit)
ICIC 3735
HYPERLEDA-IPGC 42991
J/AJ/90/1681VCC 2019

→ Request more catalogs and designations from VizieR