Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 5283


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Local and Large-Scale Environment of Seyfert Galaxies
We present a three-dimensional study of the local (<=100h-1 kpc) and the large-scale (<=1 h-1 Mpc)environment of the two main types of Seyfert AGN galaxies. For thispurpose we use 48 Seyfert 1 galaxies (with redshifts in the range0.007<=z<=0.036) and 56 Seyfert 2 galaxies (with0.004<=z<=0.020), located at high galactic latitudes, as well astwo control samples of nonactive galaxies having the same morphological,redshift, and diameter size distributions as the corresponding Seyfertsamples. Using the Center for Astrophysics (CfA2) and Southern SkyRedshift Survey (SSRS) galaxy catalogs (mB~15.5) and our ownspectroscopic observations (mB~18.5), we find that within aprojected distance of 100 h-1 kpc and a radial velocityseparation of δv<~600 km s-1 around each of ourAGNs, the fraction of Seyfert 2 galaxies with a close neighbor issignificantly higher than that of their control (especially within 75h-1 kpc) and Seyfert 1 galaxy samples, confirming a previoustwo-dimensional analysis of Dultzin-Hacyan et al. We also find that thelarge-scale environment around the two types of Seyfert galaxies doesnot vary with respect to their control sample galaxies. However, theSeyfert 2 and control galaxy samples do differ significantly whencompared to the corresponding Seyfert 1 samples. Since the maindifference between these samples is their morphological typedistribution, we argue that the large-scale environmental differencecannot be attributed to differences in nuclear activity but rather totheir different type of host galaxies.

Spatially Resolved Narrow-Line Region Kinematics in Active Galactic Nuclei
We have analyzed Hubble Space Telescope spectroscopy of 24 nearby activegalactic nuclei (AGNs) to investigate spatially resolved gas kinematicsin the narrow-line region (NLR). These observations effectively isolatethe nuclear line profiles on less than 100 pc scales and are used toinvestigate the origin of the substantial scatter between the widths ofstrong NLR lines and the stellar velocity dispersion σ*of the host galaxy, a quantity that relates with substantially lessscatter to the mass of the central, supermassive black hole and moregenerally characterize variations in the NLR velocity field with radius.We find that line widths measured with STIS at a range of spatial scalessystematically underestimate both σ* and the line widthmeasured from ground-based observations, although they do havecomparably large scatter to the relation between ground-based NLR linewidth and σ*. There are no obvious trends in theresiduals when compared with a range of host galaxy and nuclearproperties. The widths and asymmetries of [O III] λ5007 and [SII] λλ6716, 6731 as a function of radius exhibit a widerange of behavior. Some of the most common phenomena are substantialwidth increases from the STIS to the large-scale, ground-based apertureand almost no change in line profile between the unresolved nuclearspectrum and ground-based measurements. We identify asymmetries in asurprisingly large fraction of low-ionization [S II] line profiles andseveral examples of substantial red asymmetries in both [O III] and [SII]. These results underscore the complexity of the circumnuclearmaterial that constitutes the NLR and suggest that the scatter in theNLR width and σ* correlation cannot be substantiallyreduced with a simple set of empirical relations.

A Survey of Kiloparsec-Scale Radio Outflows in Radio-Quiet Active Galactic Nuclei
Seyfert galaxies commonly host compact jets spanning 10-100 pc scales,but larger structures are resolved out in long-baseline aperturesynthesis surveys. Previous, targeted studies showed thatkiloparsec-scale radio structures (KSRs) may be a common feature ofSeyfert and LINER galaxies, and the origin of KSRs may be starbursts oractive galactic nuclei (AGNs). We report a new Very Large Array surveyof a complete sample of Seyfert and LINER galaxies. Out of all of thesurveyed radio-quiet sources, we find that 44% (19 out of 43) showextended radio structures at least 1 kpc in total extent that do notmatch the morphology of the disk or its associated star-forming regions.The detection rate is a lower limit owing to the combined effects ofprojection and resolution. The infrared colors of the KSR host galaxiesare unremarkable compared to other Seyfert galaxies, and the large-scaleoutflows orient randomly with respect to the host galaxy axes. The KSRSeyfert galaxies instead stand out by deviating significantly from thefar-infrared-radio correlation for star-forming galaxies, with tendencytoward radio excess, and they are more likely to have a relativelyluminous, compact radio source in the nucleus; these results argue thatKSRs are powered by the AGNs rather than starbursts. The high detectionrate indicates that Seyfert galaxies generate radio outflows over asignificant fraction of their lifetime, which is much longer than thedynamical timescale of an AGN-powered jet but is comparable instead tothe buoyancy timescale. The likely explanation is that the KSRsoriginate from jet plasma that has been decelerated by interaction withthe nuclear interstellar medium (ISM). Based on a simple ram pressureargument, the kinetic power of the jet on kiloparsec scales is about 3orders of magnitude weaker than the power of the jet on 10-100 pcscales. This result is consistent with the interaction model, in whichcase virtually all of the jet power must be lost to the ISM within theinner kiloparsec.

Supernovae 2005du, 2005dv, 2005dw, 2005dx, 2005dy, 2005dz
IAUC 8598 available at Central Bureau for Astronomical Telegrams.

The Relationship of Hard X-Ray and Optical Line Emission in Low-Redshift Active Galactic Nuclei
In this paper we assess the relationship of the population of activegalactic nuclei (AGNs) selected by hard X-rays to the traditionalpopulation of AGNs with strong optical emission lines. First, we studythe emission-line properties of a new hard-X-ray-selected sample of 47local AGNs (classified optically as Type 1 and 2 AGNs). We find that thehard X-ray (3-20 keV) and [O III] λ5007 optical emission-lineluminosities are well-correlated over a range of about 4 orders ofmagnitude in luminosity (mean luminosity ratio 2.15 dex with a standarddeviation of σ=0.51 dex). Second, we study the hard X-rayproperties of a sample of 55 local AGNs selected from the literature onthe basis of the flux in the [O III] line. The correlation between thehard X-ray (2-10 keV) and [O III] luminosity for the Type 1 AGNs isconsistent with what is seen in the hard-X-ray-selected sample. However,the Type 2 AGNs have a much larger range in the luminosity ratio, andmany are very weak in hard X-rays (as expected for heavily absorbedAGNs). We then compare the hard X-ray (3-20 keV) and [O III] luminosityfunctions of AGNs in the local universe. These have similar faint-endslopes, with a luminosity ratio of 1.60 dex (0.55 dex smaller than themean value for individual hard-X-ray-selected AGNs). We conclude that atlow redshift, selection by narrow optical emission lines will recovermost AGNs selected by hard X-rays (with the exception of BL Lacobjects). However, selection by hard X-rays misses a significantfraction of the local AGN population with strong emission lines.

The Link between Star Formation and Accretion in LINERs: A Comparison with Other Active Galactic Nucleus Subclasses
We present archival high-resolution X-ray imaging observations of 25nearby LINERs observed by ACIS on board Chandra. This sample builds onour previously published proprietary and archival X-ray observations andincludes the complete set of LINERs with published black hole masses andFIR luminosities that have been observed by Chandra. Of the 82 LINERsobserved by Chandra, 41 (50%) display hard nuclear cores consistent withan AGN. The nuclear 2-10 keV luminosities of these AGN-LINERs range from~2×1038 to ~1×1044 ergss-1. Reinforcing our previous work, we find a significantcorrelation between the Eddington ratio,Lbol/LEdd, and the FIR luminosity,LFIR, as well as the IR brightness ratio,LFIR/LB, in the host galaxy of AGN-LINERs thatextends over 7 orders of magnitude in Lbol/LEdd.Combining our AGN-LINER sample with galaxies from other AGN subclasses,we find that this correlation is reinforced in a sample of 129 AGNs,extending over almost 9 orders of magnitude inLbol/LEdd. Using archival and previously publishedobservations of the 6.2 μm PAH feature from ISO, we find that it isunlikely that dust heating by the AGN dominates the FIR luminosity inour sample of AGNs. Our results may therefore imply a fundamental linkbetween the mass accretion rate (M˙), as measured by the Eddingtonratio, and the star formation rate (SFR), as measured by the FIRluminosity. Apart from the overall correlation, we find that thedifferent AGN subclasses occupy distinct regions in the LFIRand Lbol/LEdd plane. Assuming a constant radiativeefficiency for accretion, our results may imply a variation in theSFR/M˙ ratio as a function of AGN activity level, a result that mayhave significant consequences for our understanding of galaxy formationand black hole growth.

Dust Morphology of Hidden Broad-Line Region and Non-Hidden Broad-Line Region Seyfert 2 Galaxies
We investigate the nuclear dust properties of hidden broad-line region(HBLR) and non-HBLR Seyfert 2 galaxies. Optical images obtained from theHubble Space Telescope for a selected sample of HBLR and non-HBLRSeyfert 2 galaxies are fitted with the Galfit package to probe the innerstructures of these galaxies within the central 1 kpc regions. Most ofthe galaxies show complicated dust features in these regions. However,the dust morphology shows no significant difference between the HBLR andnon-HBLR Seyfert 2 galaxies. Dust masses inside the 1 kpc nuclearregions (M1kpc) are estimated from the obscuration levels inthe central regions of these galaxies. We compare our results with otherobserved properties, including [O III], far-infrared, and radioemission. We find that the HBLR and non-HBLR Seyfert 2 galaxies showdifferent near-infrared colors and M1kpc-FIR correlations,indicating that these two classes of Seyfert 2 galaxies are dominated bydifferent emission mechanisms. We suggest that they are intrinsicallydifferent and cannot be explained by the standard unification model.

A Simple Test for the Existence of Two Accretion Modes in Active Galactic Nuclei
By analogy to the different accretion states observed in black holeX-ray binaries (BHXBs), it appears plausible that accretion disks inactive galactic nuclei (AGNs) undergo a state transition between aradiatively efficient and inefficient accretion flow. If the radiativeefficiency changes at some critical accretion rate, there will be achange in the distribution of black hole masses and bolometricluminosities at the corresponding transition luminosity. To test thisprediction, I consider the joint distribution of AGN black hole massesand bolometric luminosities for a sample taken from the literature. Thesmall number of objects with low Eddington-scaled accretion ratesm˙<0.01 and black hole massesMBH<109Msolar constitutes tentativeevidence for the existence of such a transition in AGNs. Selectioneffects, in particular those associated with flux-limited samples,systematically exclude objects in particular regions of the(MBH,Lbol) plane. Therefore, they requireparticular attention in the analysis of distributions of black holemass, bolometric luminosity, and derived quantities such as theaccretion rate. I suggest further observational tests of the BHXB-AGNunification scheme that are based on the jet domination of the energyoutput of BHXBs in the hard state, and of the possible equivalence ofBHXB in the very high (or steep power-law) state showing ejections andefficiently accreting quasars and radio galaxies with powerful radiojets.

X-ray obscuration and obscured AGN in the local universe
We discuss the X-ray properties of 49 local (z<0.035) Seyfert 2galaxies with HST/WFC2 high-resolution optical coverage. It includes theresults of 26 still unpublished Chandra and XMM-Newton observations,which yield 25 (22) new X-ray detections in the 0.5-2 keV (2-10 keV)energy band. Our sample covers a range in the 2-10 keV observed flux,F2-10, from 3 × 10-11 to 6 ×10-15 erg cm-2 s-1. The percentage ofobjects that are likely obscured by Compton-thick matter (columndensity, NH ≥ σt-1 ≃1.6 × 1024 cm-2) is ≃50%, and reaches≃80% for log (F2-10) < 12.3. Hence, Kαfluorescent iron lines with large Equivalent Width ({EW} > 0.6 keV)are common in our sample (6 new detections at a confidence level≥2σ). They are explained as due to reflection off theilluminated side of optically thick material. We confirm a correlationbetween the presence of a 100-pc scale nuclear dust in the WFC2 imagesand Compton-thin obscuration. We interpret this correlation as due tothe large covering fraction of gas associated with the dust lanes. TheX-ray spectra of highly obscured AGN invariably present a prominent softexcess emission above the extrapolation of the hard X-ray component.This soft component can account for a very large fraction of the overallX-ray energy budget. As this component is generally unobscured - andtherefore likely produced in extended gas structures - it may lead to asevere underestimation of the nuclear obscuration in z ˜ 1 absorbedAGN, if standard X-ray colors are used to classify them. As a by-productof our study, we report the discovery of a soft X-ray, luminous(≃7 × 1040 erg s-1) halo embedding theinteracting galaxy pair Mkn 266.

New H2O masers in Seyfert and FIR bright galaxies
Using the Effelsberg 100-m telescope, detections of four extragalacticwater vapor masers are reported. Isotropic luminosities are ~50, 1000, 1and 230 Lȯ for Mrk 1066 (UGC 2456), Mrk 34, NGC 3556 andArp 299, respectively. Mrk 34 contains by far the most distant and oneof the most luminous water vapor megamasers so far reported in a Seyfertgalaxy. The interacting system Arp 299 appears to show two maserhotspots separated by approximately 20´´. With these newresults and even more recent data from Braatz et al. (2004, ApJ, 617,L29), the detection rate in our sample of Seyferts with known jet-NarrowLine Region interactions becomes 50% (7/14), while in star forminggalaxies with high (S100~μ m>50 Jy) far infrared fluxesthe detection rate is 22% (10/45). The jet-NLR interaction sample maynot only contain “jet-masers” but also a significant numberof accretion “disk-masers” like those seen in NGC 4258. Astatistical analysis of 53 extragalactic H2O sources (excluding theGalaxy and the Magellanic Clouds) indicates (1) that the correlationbetween IRAS Point Source and H2O luminosities, established forindividual star forming regions in the galactic disk, also holds forAGN-dominated megamaser galaxies; (2) that maser luminosities are notcorrelated with 60 μm/100 μm color temperatures; and (3) that onlya small fraction of the luminous megamasers (L_H_2O > 100Lȯ) detectable with 100-m sized telescopes have so farbeen identified. The H2O luminosity function (LF) suggests that thenumber of galaxies with 1 Lȯ < L_H_2O < 10Lȯ, the transition range between“kilomasers” (mostly star formation) and“megamasers” (active galactic nuclei), is small. The overallslope of the LF, ~-1.5, indicates that the number of detectable masersis almost independent of their luminosity. If the LF is not steepeningat very high maser luminosities and if it is possible to find suitablecandidate sources, H2O megamasers at significant redshifts should bedetectable even with present day state-of-the-art facilities.

Emission Line Properties of Active Galactic Nuclei from a Post-COSTAR Hubble Space Telescope Faint Object Spectrograph Spectral Atlas
We present consistent emission-line measurements for active galacticnuclei (AGNs), useful for reliable statistical studies of emission lineproperties. This paper joins a series including similar measurements of993 spectra from the Large Bright Quasar Survey and 174 spectra of AGNsobtained from the Faint Object Spectrograph (FOS) on the Hubble SpaceTelescope (HST) prior to the installation of COSTAR. This time weconcentrate on 220 spectra obtained with the FOS after the installationof COSTAR, completing the emission line analysis of all FOS archivalspectra. We use the same automated technique as in previous papers,which accounts for Galactic extinction, models blended optical and UViron emission, includes Galactic and intrinsic absorption lines, andmodels emission lines using multiple Gaussians. We present UV andoptical emission line parameters (equivalent widths, fluxes, FWHM, andline positions) for a large number (28) of emission lines includingupper limits for undetected lines. Further scientific analyses will bepresented in subsequent papers.

A Green Bank Telescope Search for Water Masers in Nearby Active Galactic Nuclei
Using the Green Bank Telescope, we have conducted a survey for 1.3 cmwater maser emission toward the nuclei of nearby active galaxies, themost sensitive large survey for H2O masers to date. Among 145galaxies observed, maser emission was newly detected in 11 sources andconfirmed in one other. Our survey targeted nearby (v<12,000 kms-1), mainly type 2 active galactic nuclei (AGNs) north ofδ=-20deg and includes a few additional sources as well.We find that more than one-third of Seyfert 2 galaxies have strong maseremission, although the detection rate declines beyond v~5000 kms-1 because of sensitivity limits. Two of the masersdiscovered during this survey are found in unexpected hosts: NGC 4151(Seyfert 1.5) and NGC 2782 (starburst). We discuss the possiblerelations between the large X-ray column to NGC 4151 and a possiblehidden AGN in NGC 2782 to the detected masers. Four of the masersdiscovered here, NGC 591, NGC 4388, NGC 5728, and NGC 6323, havehigh-velocity lines symmetrically spaced about the systemic velocity, alikely signature of molecular gas in a nuclear accretion disk. The masersource in NGC 6323, in particular, reveals the classic spectrum of a``disk maser'' represented by three distinct groups of Dopplercomponents. Future single-dish and VLBI observations of these fourgalaxies could provide a measurement of the distance to each galaxy andof the Hubble constant, independent of standard candle calibrations.

Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies
Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.

Galaxy Interaction and the Starburst-Seyfert Connection
Galaxy interactions are studied in terms of the starburst-Seyfertconnection. The starburst requires a high rate of gas supply. Since theefficiency for supplying the gas is high in a galaxy interaction,although the companion is not necessarily discernible, Seyfert galaxieswith circumnuclear starbursts are expected to be interacting. Since thelarge amounts of circumnuclear gas and dust obscure the broad-lineregion, they are expected to be observed as Seyfert 2 galaxies. Theactive galactic nucleus itself does not require a high rate of gassupply. Seyfert galaxies without circumnuclear starbursts are notnecessarily expected to be interacting even at the highest luminosities.They are not necessarily expected to evolve from Seyfert galaxies withcircumnuclear starbursts. We derive these and other theoreticalexpectations and confirm them with statistics on observational data ofmagnitude-limited samples of Seyfert galaxies.

Properties of isolated disk galaxies
We present a new sample of northern isolated galaxies, which are definedby the physical criterion that they were not affected by other galaxiesin their evolution during the last few Gyr. To find them we used thelogarithmic ratio, f, between inner and tidal forces acting upon thecandidate galaxy by a possible perturber. The analysis of thedistribution of the f-values for the galaxies in the Coma cluster leadus to adopt the criterion f ≤ -4.5 for isolated galaxies. Thecandidates were chosen from the CfA catalog of galaxies within thevolume defined by cz ≤5000 km s-1, galactic latitudehigher than 40o and declination ≥-2.5o. Theselection of the sample, based on redshift values (when available),magnitudes and sizes of the candidate galaxies and possible perturberspresent in the same field is discussed. The final list of selectedisolated galaxies includes 203 objects from the initial 1706. The listcontains only truly isolated galaxies in the sense defined, but it is byno means complete, since all the galaxies with possible companions underthe f-criterion but with unknown redshift were discarded. We alsoselected a sample of perturbed galaxies comprised of all the diskgalaxies from the initial list with companions (with known redshift)satisfying f ≥ -2 and \Delta(cz) ≤500 km s-1; a totalof 130 objects. The statistical comparison of both samples showssignificant differences in morphology, sizes, masses, luminosities andcolor indices. Confirming previous results, we found that late spiral,Sc-type galaxies are, in particular, more frequent among isolatedgalaxies, whereas Lenticular galaxies are more abundant among perturbedgalaxies. Isolated systems appear to be smaller, less luminous and bluerthan interacting objects. We also found that bars are twice as frequentamong perturbed galaxies compared to isolated galaxies, in particularfor early Spirals and Lenticulars. The perturbed galaxies have higherLFIR/LB and Mmol/LB ratios,but the atomic gas content is similar for the two samples. The analysisof the luminosity-size and mass-luminosity relations shows similartrends for both families, the main difference being the almost totalabsence of big, bright and massive galaxies among the family of isolatedsystems, together with the almost total absence of small, faint and lowmass galaxies among the perturbed systems. All these aspects indicatethat the evolution induced by interactions with neighbors would proceedfrom late, small, faint and low mass Spirals to earlier, bigger, moreluminous and more massive spiral and lenticular galaxies, producing atthe same time a larger fraction of barred galaxies but preserving thesame relations between global parameters. The properties we found forour sample of isolated galaxies appear similar to those of high redshiftgalaxies, suggesting that the present-day isolated galaxies could bequietly evolved, unused building blocks surviving in low densityenvironments.Tables \ref{t1} and \ref{t2} are only available in electronic form athttp://www.edpsciences.org

A Possible Signature of Connection between Blazars and Seyfert Galaxies
The accretion rates (dot{M}) and their correlation with cosmologicalredshifts for a sample of blazars and Seyfert galaxies are presented.The sample includes 77 blazars (28 FSRQs, 26 LBLs, and 23 HBLs) and 60Seyfert galaxies, of which the extended spectral energy distributioninformation and redshifts are available. Within the framework ofaccreting black holes, the accretion rates for these sources wereestimated based on their bolometric luminosities. The result shows thatthe accretion rates are significantly different for each subclass of theblazars and Seyfert galaxies. Their averages are, respectively, 50.2,17.0, 1.0, 0.1Modot yr-1 for the FSRQs, LBLs, HBLs, and theSeyfert galaxies, exhibiting a well descending sequence ofFSRQs-LBLs-HBLs-Seyfert galaxies. They are strongly correlated with theredshifts for both blazars and Seyfert galaxies. The linear correlationcoefficients are 0.81 and 0.68 with a chance probab ility of p <0.0001, respectively. A plot of dot{M} - z shows that the blazars andthe Seyfert galaxies distribute in a distinguishable regions with aconnection at z ˜ 0.7 and almost all the sources lie in a narrowregion of z1.40 ≤ dot{M} ≤ 250 z1.40,illustrating a strong correlation between the two quantities for thewhole sample. The regression line is dot{M} = (14.5 ± 1.2)z1.40±0.06 Modot yr-1 with a linearcoefficient of 0.93 and a chance probability of p < 0.0001,suggesting a connection between blazars and Seyfert galaxies. Thisconnection might imply that the two classes are on the same evolutionarysequence. Although the correlations of the data are formally solid, theconclusion may be affected by one source of considerable uncertainty atthe data level, which is also discussed.

Compact Nuclear Starbursts in Seyfert 2 Galaxies from the CfA and 12 Micron Samples
We present infrared 2.8-4.1 μm slit spectra of 32 Seyfert 2 galaxiesin the CfA and 12 μm samples. The 3.3 μm polycyclic aromatichydrocarbon (PAH) emission feature was used to estimate the absolutemagnitude of a compact nuclear starburst (less than a few hundredparsecs in size) that is presumed to have occurred in the outer regionof an obscuring dusty molecular torus around a central supermassiveblack hole. We detected 3.3 μm PAH emission in 11 of the 32 Seyfert 2nuclei in our sample, providing evidence for the presence of compactnuclear starbursts in a significant fraction of Seyfert 2 nuclei.However, the rest-frame equivalent widths of the 3.3 μm PAH emissionand the 3.3 μm PAH-to-infrared luminosity ratios measured in thisstudy suggest that compact nuclear starbursts generally do notcontribute significantly to the observed 3-4 μm nuclear fluxes or tothe infrared luminosities of Seyfert 2 galaxies. Absorption features at3.4 μm from bare dust were clearly detected in only two of thenuclei, and features at 3.1 μm from ice-covered dust were detected inonly one nucleus. If the dust properties in the direction of theseSeyfert 2 nuclei do not differ significantly from the Galacticinterstellar medium, then these small absorption optical depths suggestthat dust extinction toward the 3-4 μm continuum emitting region inthe innermost part of the obscuring dusty torus is modest:AV<50-60 mag. Finally, the 3.3 μm PAH emissionluminosities measured in this study were found to be significantlycorrelated with IRAS 12 and 25 μm and nuclear N-band (10.6 μm)luminosities. If these three luminosities trace the power of the activegalactic nucleus (AGN), then the luminosities of compact nuclearstarbursts and AGNs are correlated. This correlation is in agreementwith theories predicting that the presence of a compact nuclearstarburst in the torus leads to an enhancement of the mass accretionrate onto the central supermassive black hole.

Spectral Energy Distributions of Seyfert Nuclei
We present nuclear spectral energy distributions (SEDs) in the range0.4-16 μm for an expanded CfA sample of Seyfert galaxies. Thespectral indexes (fν~ν-αIR)from 1 to 16 μm range from αIR~0.9 to 3.8. Theshapes of the spectra are correlated with Seyfert type in the sense thatsteeper nuclear SEDs (νfν increasing with increasingwavelength) tend to be found in Seyfert 2's, and flatter SEDs(νfν is constant) in Seyfert 1-1.5's. The galaxiesoptically classified as Seyferts 1.8's and 1.9's display values ofαIR as in type 1 objects, or values intermediatebetween those of Seyfert 1's and Seyfert 2's. The intermediate SEDs ofmany Seyfert 1.8-1.9's may be consistent with the presence of a pureSeyfert 1 viewed through a moderate amount (AV<~5 mag) offoreground galaxy extinction. We find, however, that between 10% and 20%of galaxies with broad optical line components have steep infrared SEDs.Torus models usually adopt high equatorial opacities to reproduce theinfrared properties of Seyfert 1's and 2's, resulting in a dichotomy ofinfrared SEDs (flat for type 1's, and steep for type 2's). Such adichotomy, however, is not observed in our sample. The wide range ofspectral indexes observed in the type 2 objects, the lack of extremelysteep SEDs, and the large numbers of objects with intermediate spectralindexes cannot be reconciled with predictions from existing opticallythick torus models. We discuss possible modifications to improve torusmodels, including low optical depth tori, clumpy dusty tori, and highoptical depth tori with an extended optically thin component.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

The ESO-Sculptor Survey: Luminosity functions of galaxies per spectral type at redshifts 0.1-0.5
We present the first statistical analysis of the complete ESO-SculptorSurvey (ESS) of faint galaxies. The flux-calibrated sample of 617galaxies with Rc <= 20.5 is separated into 3 spectralclasses, based on a principal component analysis which provides acontinuous and template-independent spectral classification. We use anoriginal method to estimate accurate K-corrections: comparison of theESS spectra with a spectral library using the principal componentanalysis allows us to extrapolate the missing parts of the observedspectra at blue wavelengths, then providing a polynomialparameterization of K-corrections as a function of spectral type andredshift. We also report on all sources of random and systematic errorswhich affect the spectral classification, the K-corrections, and theresulting absolute magnitudes.We use the absolute magnitudes to measure the Johnson-Cousins B, V,Rc luminosity functions of the ESS as a function of spectralclass. The shape of the derived luminosity functions show markeddifferences among the 3 spectral classes, which are common to the B, V,Rc bands, and therefore reflect a physical phenomenon: forgalaxies of later spectral type, the characteristic magnitude is fainterand the faint-end is steeper. The ESS also provides the first estimatesof luminosity functions per spectral type in the V band.The salient results are obtained by fitting the ESS luminosity functionswith composite functions based on the intrinsic luminosity functions permorphological type measured locally by \citet{sandage85b} and\citet{jerjen97b}. The Gaussian luminosity functions for the nearbySpiral galaxies can be reconciled with the ESS intermediate andlate-type luminosity functions if the corresponding classes contain anadditional Schechter contribution from Spheroidal and Irregular dwarfgalaxies, respectively. The present analysis of the ESS luminosityfunctions offers a renewed interpretation of the galaxy luminosityfunction from redshift surveys. It also illustrates how luminosityfunctions per spectral type may be affected by morphological typemixing, and emphasizes the need for a quantitative morphologicalclassification at zga0 .1 which separates the giant and dwarf galaxypopulations.Based on observations collected at the European Southern Observatory(ESO), La Silla, Chile.

Gas inflow in barred galaxies - effects of secondary bars
We report results of high-resolution hydrodynamical simulations of gasflows in barred galaxies, with a focus on gas dynamics in the centralkiloparsec. In a single bar with an inner Lindblad resonance, we findeither near-circular motion of gas in the nuclear ring, or a spiralshock extending towards the galaxy centre, depending on the sound speedin the gas. From a simple model of a dynamically possible doubly barredgalaxy with resonant coupling, we infer that the secondary bar is likelyto end well inside its corotation. Such a bar cannot create shocks inthe gas flow, and therefore will not reveal itself in colour mapsthrough straight dust lanes: the gas flows induced by it are differentfrom those caused by the rapidly rotating main bars. In particular, wefind that secondary stellar bars are unlikely to increase the massinflow rate into the galactic nucleus.

Comparisons of Infrared Colors and Emission-line Intensities between Two types of Seyfert 2 Galaxies
We study the relation between the infrared colors, [OIII] emissionlines, gaseous absorbing column density (NH),and thedetectability of the polarized (hidden) broad-line region (HBLR) in alarge sample of 75 Seyfert 2 galaxies (Sy2s). From the indicators ofstar-formation activity, f60/f100 andLFIR/LB, we find some evidence that the Sy2swithout HBLR show higher star-formation activities than those with HBLR,in agreement with previous prediction. Also, we confirm that the HBLRSy2s tend to have a larger luminosity ratio of the core to the hostgalaxy, suggesting that the HBLR Sy2s display more powerful AGNactivity. However, the level of obscuration found in previous papers isnearly indistinguishable between the two types of Sy2s. The resultssupport the statement that the non-HBLR Sy2s, with a weaker corecomponent and a stronger star-formation activity component, areintrinsically different from the HBLR Sy2s, which are Sy1 systems with ahidden powerful AGN core and a low star-formation activity. Theindications are that the non-HBLR Sy2s might be at an earlierevolutionary phase than the HBLR Sy2s.

``Hidden'' Seyfert 2 Galaxies and the X-Ray Background
Obscured active galactic nuclei, which are classified optically as type2 (narrow line) Seyfert galaxies in the local universe, are by far themost promising candidates for the origin of the hard (2-10 keV) X-raybackground radiation. However, optical follow-up observations of faintX-ray sources in deep Chandra images have revealed surprising numbers ofapparently normal galaxies at modest redshift. Such objects represent~40%-60% of the sources classified in deep Chandra surveys, raising thepossibility that the X-ray galaxy population has evolved with cosmictime. Alternatively, most of the faint X-ray galaxies in question are sodistant that their angular diameters are comparable to the slit widthsused in ground-based spectroscopic observations; thus, their nuclearspectral features may be overwhelmed (``hidden'') by host galaxy light.To test this hypothesis, we have obtained integrated spectra of a sampleof nearby, well-studied Seyfert 2 galaxies. The data, which accuratelysimulate observations of distant Chandra sources, demonstrateconvincingly that the defining spectral signatures of Seyfert 2s can behidden by light from their host galaxies. In fact, 60% of the observedobjects would not be classified as Seyfert 2s on the basis of theirintegrated spectra, similar to the fraction of faint X-ray sourcesidentified with ``normal'' galaxies. Thus, the numbers of narrow-lineactive galaxies in deep Chandra surveys (and perhaps all ground-basedspectroscopic surveys of distant galaxies) are likely to have beenunderestimated.

Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities
Black hole mass, along with mass accretion rate, is a fundamentalproperty of active galactic nuclei (AGNs). Black hole mass sets anapproximate upper limit to AGN energetics via the Eddington limit. Wecollect and compare all AGN black hole mass estimates from theliterature; these 177 masses are mostly based on the virial assumptionfor the broad emission lines, with the broad-line region size determinedfrom either reverberation mapping or optical luminosity. We introduce200 additional black hole mass estimates based on properties of the hostgalaxy bulges, using either the observed stellar velocity dispersion orthe fundamental plane relation to infer σ these methods assumethat AGN hosts are normal galaxies. We compare 36 cases for which blackhole mass has been generated by different methods and find, forindividual objects, a scatter as high as a couple of orders ofmagnitude. The less direct the method, the larger the discrepancy withother estimates, probably due to the large scatter in the underlyingcorrelations assumed. Using published fluxes, we calculate bolometricluminosities for 234 AGNs and investigate the relation between blackhole mass and luminosity. In contrast to other studies, we find nosignificant correlation of black hole mass with luminosity, other thanthose induced by circular reasoning in the estimation of black holemass. The Eddington limit defines an approximate upper envelope to thedistribution of luminosities, but the lower envelope depends entirely onthe sample of AGNs included. For any given black hole mass, there is arange in Eddington ratio of up to 3 orders of magnitude.

Seyfert 2 Galaxies with Spectropolarimetric Observations
We present a compilation of radio, infrared, optical, and hard X-ray(2-10 keV) data for a sample of 90 Seyfert 2 galaxies (Sy2s) withspectropolarimetric observations (41 Sy2s with detection of polarizedbroad lines [PBLs] and 49 without PBLs). Compared to Sy2s without PBLs,Sy2s with PBLs tend to be earlier type spirals and show warmermidinfrared color and significant excess of emissions (including thehard X-ray [2-10 keV], [O III] λ5007, infrared [25 μm], andradio). Our analyses indicate that the majority of Sy2s without PBLs arethose sources having less powerful active galactic nucleus (AGN)activities, most likely caused by a low accretion rate. It implies thatthe detectability of the polarized broad emission lines in Sy2s maydepend on their central AGN activities in most cases. Based on theavailable data, we find no compelling evidence for the presence of twotypes of Sy2s; one of which has been proposed to be intrinsicallydifferent from Sy2s claimed in the unification model.

The Relation between Mid-Infrared Emission and Black Hole Mass in Active Galactic Nuclei: A Direct Way to Probe Black Hole Growth?
We use a large, heterogeneous sample of local active galactic nuclei(AGNs) that includes Seyfert 1 galaxies, Seyfert 2 galaxies, andPalomar-Green quasars to investigate for the first time the relationbetween black hole mass (MBH) and mid-infrared nuclearemission. We find a clear relation between MBH and 10 μmnuclear luminosity for these local AGNs. There are no significantdifferences between type 1 and type 2 objects, implying that thereprocessing of the 10 μm nuclear emission is not severely affectedby geometric and optical depth effects. We also confirm thatMBH is related to the 2-10 keV X-ray luminosity, but only forCompton-thin galaxies. We present a theoretical basis for theseempirical relations and discuss possible reasons for the observedscatter. Our results show that rest-frame 10 μm and hard X-rayluminosities (especially the former, which is applicable to all AGNtypes) can be powerful tools for conducting a census of BH masses athigh redshift and for probing their cosmological evolution.

Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling
We present archival Hubble Space Telescope (HST) images of the nuclearregions of 43 of the 46 Seyfert galaxies found in the volume-limited,spectroscopically complete CfA Redshift Survey sample. Using an improvedmethod of image contrast enhancement, we create detailed high-quality``structure maps'' that allow us to study the distributions of dust,star clusters, and emission-line gas in the circumnuclear regions(100-1000 pc scales) and in the associated host galaxy. Essentially allof these Seyfert galaxies have circumnuclear dust structures withmorphologies ranging from grand-design two-armed spirals to chaoticdusty disks. In most Seyfert galaxies there is a clear physicalconnection between the nuclear dust spirals on hundreds of parsec scalesand large-scale bars and spiral arms in the host galaxies proper. Theseconnections are particularly striking in the interacting and barredgalaxies. Such structures are predicted by numerical simulations of gasflows in barred and interacting galaxies and may be related to thefueling of active galactic nuclei by matter inflow from the host galaxydisks. We see no significant differences in the circumnuclear dustmorphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei areobscured by large-scale dust structures in the host galaxies. If Seyfert2s are obscured Seyfert 1s, then the obscuration must occur on smallerscales than those probed by HST. Based on observations made with theNASA/ESA Hubble Space Telescope, obtained from the data archive at theSpace Telescope Science Institute. STScI is operated by the Associationof Universities for Research in Astronomy, Inc., under the NASA contractNAS 5-26555.

Nested and Single Bars in Seyfert and Non-Seyfert Galaxies
We analyze the observed properties of nested and single stellar barsystems in disk galaxies. The 112 galaxies in our sample comprise thelargest matched Seyfert versus non-Seyfert galaxy sample of nearbygalaxies with complete near-infrared or optical imaging sensitive tolength scales ranging from tens of parsecs to tens of kiloparsecs. Thepresence of bars is deduced by fitting ellipses to isophotes in HubbleSpace Telescope (HST) H-band images up to 10" radius and in ground-basednear-infrared and optical images outside the H-band images. This is aconservative approach that is likely to result in an underestimate ofthe true bar fraction. We find that a significant fraction of the samplegalaxies, 17%+/-4%, have more than one bar, and that 28%+/-5% of barredgalaxies have nested bars. The bar fractions appear to be stableaccording to reasonable changes in our adopted bar criteria. For thenested bars, we detect a clear division in length between thelarge-scale (primary) bars and small-scale (secondary) bars, in bothabsolute and normalized (to the size of the galaxy) length. We arguethat this bimodal distribution can be understood within the framework ofdisk resonances, specifically the inner Lindblad resonances (ILRs),which are located where the gravitational potential of the innermostgalaxy switches effectively from three-dimensional to two-dimensional.This conclusion is further strengthened by the observed distribution ofthe sizes of nuclear rings which are dynamically associated with theILRs. While primary bar sizes are found to correlate with the hostgalaxy sizes, no such correlation is observed for the secondary bars.Moreover, we find that secondary bars differ morphologically from singlebars. Our matched Seyfert and non-Seyfert samples show a statisticallysignificant excess of bars among the Seyfert galaxies at practically alllength scales. We confirm our previous results that bars are moreabundant in Seyfert hosts than in non-Seyfert galaxies and that Seyfertgalaxies always show a preponderance of ``thick'' bars compared to thebars in non-Seyfert galaxies. Finally, no correlation is observedbetween the presence of a bar and that of companion galaxies, evenrelatively bright ones. Overall, since star formation and dustextinction can be significant even in the H band, the stellar dynamicsof the central kiloparsec cannot always be revealed reliably by the useof near-infrared surface photometry alone.

Far-Infrared Census of Starburst-Seyfert Connection
Far-infrared flux densities are newly extracted from the IRAS databasefor the Revised Shapley-Ames and CfA complete samples of Seyfertgalaxies. These data are used to classify the Seyfert galaxies intothose where the far-infrared continuum emission is dominated by theactive galactic nucleus (AGN), circumnuclear starburst, or host galaxy.While AGN-dominant objects consist of comparable numbers of Seyfert 1and 2 galaxies, starburst- and host-dominant objects consistpreferentially of Seyfert 2 galaxies. Thus, in addition to the dustytorus, the circumnuclear starburst region and host galaxy are importantin hiding the broad-line region. Morphologically, starburst-dominantSeyfert galaxies are of later types and more strongly interacting thanAGN-dominant Seyfert galaxies. In a later type galaxy, the AGN centralengine has a lower Eddington luminosity, and the gaseous content ishigher. The gas is efficiently supplied to the starburst via agalaxy-galaxy interaction. Morphologies of host-dominant Seyfertgalaxies are of various types. Since starbursts in Seyfert galaxies areolder than those in classical starburst galaxies, we propose anevolution from starburst to starburst-dominant Seyfert to host-dominantSeyfert for a late-type galaxy. An evolution from AGN-dominant Seyfertto host-dominant Seyfert is proposed for an early-type galaxy. Thesesequences have durations of a few times 108 yr and occurrepeatedly within a galaxy during its evolution from a late type to anearly type.

Double Bars, Inner Disks, and Nuclear Rings in Early-Type Disk Galaxies
We present results from a survey of an unbiased sample of 38 early-type(S0-Sa), low-inclination, optically barred galaxies in the field, usingimages both from the ground and from space. Our goal was to find andcharacterize central stellar and gaseous structures: secondary bars,inner disks, and nuclear rings. We find that bars inside bars aresurprisingly common: at least one-quarter of the sample galaxies(possibly as many as 40%) are double barred, with no preference forHubble type or the strength of the primary bar. A typical secondary baris ~12% of the size of its primary bar and extends to 240-750 pc inradius. Secondary bars are not systematically either parallel orperpendicular to the primary; we see cases where they lead the primarybar in rotation and others where they trail, which supports thehypothesis that the two bars of a double-bar system rotateindependently. We see no significant effect of secondary bars on nuclearactivity: our double-barred galaxies are no more likely to harbor aSeyfert or LINER nucleus than our single-barred galaxies. We findkiloparsec-scale inner disks in at least 20% of our sample; they occuralmost exclusively in S0 galaxies. These disks are on average 20% thesize of their host bar and show a wider range of relative sizes than dosecondary bars. Nuclear rings are present in about a third of oursample. Most of these rings are dusty, sites of current or recent starformation, or both; such rings are preferentially found in Sa galaxies.Three S0 galaxies (8% of the sample, but 15% of the S0's) appear to havepurely stellar nuclear rings, with no evidence for dust or recent starformation. The fact that these central stellar structures are so commonindicates that the inner regions of early-type barred galaxies typicallycontain dynamically cool and disklike structures. This is especiallytrue for S0 galaxies, where secondary bars, inner disks, and/or stellarnuclear rings are present at least two-thirds of the time. If weinterpret nuclear rings, secondary bars, and (possibly) inner disks andnuclear spirals as signs of inner Lindblad resonances (ILRs), thenbetween one and two-thirds of barred S0-Sa galaxies show evidence forILRs.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Draco
Right ascension:13h41m05.70s
Declination:+67°40'20.0"
Aparent dimensions:1.202′ × 1.047′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 5283
HYPERLEDA-IPGC 48425

→ Request more catalogs and designations from VizieR