Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 6052


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A Survey of Merger Remnants. II. The Emerging Kinematic and Photometric Correlations
This paper is the second in a series exploring the properties of 51optically selected, single-nuclei merger remnants. Spectroscopic datahave been obtained for a subsample of 38 mergers and combined withpreviously obtained infrared photometry to test whether mergers exhibitthe same correlations as elliptical galaxies among parameters such asstellar luminosity and distribution, central stellar velocity dispersion(σ0), and metallicity. Paramount to the study is totest whether mergers lie on the fundamental plane. Measurements ofσ0 have been made using the Ca triplet absorption lineat 8500 Å for all 38 mergers in the subsample. Additionalmeasurements of σ0 were made for two of the mergers inthe subsample using the CO absorption line at 2.29 μm. The resultsindicate that mergers show a strong correlation among the parameters ofthe fundamental plane but fail to show a strong correlation betweenσ0 and metallicity (Mg2). In contrast toearlier studies, the σ0 values of the mergers areconsistent with objects that lie somewhere between intermediate-mass andluminous giant elliptical galaxies. However, the discrepancies withearlier studies appear to correlate with whether the Ca triplet or COabsorption lines are used to derive σ0, with the latteralmost always producing smaller values. Finally, the photometric andkinematic data are used to demonstrate for the first time that thecentral phase-space densities of mergers are equivalent to those inelliptical galaxies. This resolves a long-standing criticism of themerger hypothesis.Some of the data presented herein were obtained at the W. M. KeckObservatory, which is operated as a scientific partnership among theCalifornia Institute of Technology, the University of California, andthe National Aeronautics and Space Administration. The Observatory wasmade possible by the generous financial support of the W. M. KeckFoundation.

Molecular and Dust emission in LIRGs and ULIRGs
Observations of molecular and dust emission in high redshift galaxies isone of the challenges for GTM. Current studies on the observability ofthe molecular lines and dust emission are based on observed templates oflocal ultraluminous infrared galaxies (ULIRGs, e.g. Bain et al.1996).However the environmental conditions in galaxies at higher redshiftscould be different from those found among local galaxies and what isneeded is a thorough investigation of the global relationships betweengas, dust and star formation process. For this purpose we present astudy of the properties of dust and molecular gas in 6 LIRGs and outlinea new method that combines the dust emission models provided by GRASILwith one-zone molecular emission models.

The Nature of Nearby Counterparts to Intermediate-Redshift Luminous Compact Blue Galaxies. II. CO Observations
We present the results of a single-dish beam-matched survey of the threelowest rotational transitions of CO in a sample of 20 local (D<~70Mpc) luminous compact blue galaxies (LCBGs). These ~L*, blue, highsurface brightness, starbursting galaxies were selected on the samecriteria used to define LCBGs at higher redshifts. Our detection ratewas 70%, with those galaxies havingLB<7×109 Lsolar not detected.We find that the H2 masses of local LCBGs range from6.6×106 to 2.7×109 Msolar,assuming a Galactic CO-to-H2 conversion factor. Combiningthese results with our earlier H I survey of the same sample, we findthat the ratio of molecular to atomic gas mass is low, typically 5%-10%.Using a large velocity gradient model, we find that the average gasconditions of the entire interstellar medium in local LCBGs are similarto those found in the centers of star-forming regions in our Galaxy andin the nuclear regions of other galaxies. Star formation rates,determined from IRAS fluxes, are a few Msolaryr-1, much higher per unit dynamical mass than normal spiralgalaxies. If this rate remains constant, the molecular hydrogendepletion timescales are short, ~10-200 Myr.

Optimization of Starburst99 for Intermediate-Age and Old Stellar Populations
We have incorporated the latest release of the Padova models into theevolutionary synthesis code Starburst99. The Padova tracks were extendedto include the full asymptotic giant branch (AGB) evolution until thefinal thermal pulse over the mass range 0.9-5 Msolar. Withthis addition, Starburst99 accounts for all stellar phases thatcontribute to the integrated light of a stellar population witharbitrary age from the extreme-ultraviolet to the near-infrared. AGBstars are important for ages between 0.1 and 2 Gyr, with theircontribution increasing at longer wavelengths. We investigatesimilarities and differences between the model predictions by the Genevaand the Padova tracks. The differences are particularly pronounced atages >1 Gyr, when incompleteness sets in for the Geneva models. Wealso perform detailed comparisons with the predictions of other majorsynthesis codes and find excellent agreement. Our synthesized opticalcolors are compared to observations of old, intermediate-age, and youngpopulations. Excellent agreement is found for the old globular clustersystem of NGC 5128 and for old and intermediate-age clusters in NGC4038/4039. In contrast, the models fail for red supergiant-dominatedpopulations with subsolar abundances. This failure can be traced back toincorrect red supergiant parameters in the stellar evolutionary tracks.Our models and the synthesis code are publicly available as version 5.0of Starburst99 at http://www.stsci.edu/science/starburst99.

Active and Star-forming Galaxies and Their Supernovae
To investigate the extent to which nuclear starbursts or other nuclearactivity may be connected with enhanced star formation activity in thehost galaxy, we perform a statistical investigation of supernovae (SNe)discovered in host galaxies from four samples: the Markarian galaxiessample, the Second Byurakan Survey (SBS) sample, the north Galactic pole(NGP) sample of active or star-forming galaxies, and the NGP sample ofnormal galaxies. Forty-seven SNe in 41 Mrk galaxies, 10 SNe in six SBSgalaxies, 29 SNe in 26 NGP active or star-forming galaxies, and 29 SNein 26 NGP normal galaxies have been studied. We find that the rate ofSNe, particularly core-collapse (Types Ib/c and II) SNe, is higher inactive or star-forming galaxies in comparison with normal galaxies.Active or star-forming host galaxies of SNe are generally of latermorphological type and have lower luminosity and smaller linear sizethan normal host galaxies of SNe. The radial distribution of SNe inactive and star-forming galaxies shows a higher concentration toward thecenter of the active host galaxy than is the case for normal hostgalaxies, and this effect is more pronounced for core-collapse SNe.Ib/c-type SNe have been discovered only in active and star-forminggalaxies of our samples. About 78% of these SNe are associated with H IIregions or are located very close to the nuclear regions of these activegalaxies, which are in turn hosting AGNs or starburst nuclei. Besidesthese new results, our study also supports the conclusions of severalother earlier papers. We find that Type Ia SNe occur in all galaxytypes, whereas core-collapse SNe of Types Ib/c and II are found only inspiral and irregular galaxies. The radial distribution of Type Ib SNe intheir host galaxies is more centrally concentrated than that of Type IIand Ia SNe. The radial distances of Types Ib/c and II SNe, from thenuclei of their host galaxies, is larger for barred spiral hosts.Core-collapse SNe are concentrated in spiral arms and are often close toor in the H II regions, whereas Type Ia SNe show only a looseassociation with spiral arms and no clear association with H II regions.

Gas and Stars in an H I-Selected Galaxy Sample
We present the results of a J-band study of the H I-selected AreciboDual-Beam Survey and Arecibo Slice Survey galaxy samples using TwoMicron All Sky Survey data. We find that these galaxies span a widerange of stellar and gas properties. However, despite the diversitywithin the samples, we find a very tight correlation between luminosityand size in the J band, similar to that found in a previous paper byRosenberg & Schneider between the H I mass and size. We also findthat the correlation between the baryonic mass and the J-band diameteris even tighter than that between the baryonic mass and the rotationalvelocity.

ISO observations of the interacting galaxy Markarian 297. with the powerful supernova remnant 1982aa
Markarian (Mkn) 297 is a complex system comprised of two interactinggalaxies that has been modelled with a variety of scenarios.Observations of this system were made with the Infrared SpaceObservatory (ISO) using the ISOCAM, ISOPHOT and LWS instruments. ISOCAMmaps at 6.7 μm, 7.7 μm, 12 μm and 14.3 μm are presentedwhich, together with PHT-S spectrometry of the central interactingregion, probe the dust obscured star formation and the properties of theorganic dust. The ISOCAM observations reveal that the strongest emissionin the four bands is at a location completely unremarkable at visibleand near-IR (e.g. 2MASS) wavelengths, and does not coincide with thenuclear region of either colliding galaxy. This striking characteristichas also been observed in the overlap region of the colliding galaxiesin the Antennae (NGC 4038/4039), the intragroup region of Stephan'sQuintet, and in IC 694 in the interacting system Arp 299, and againunderlines the importance of infrared observations in understanding starformation in colliding/merging systems. At 15 μm, the hidden sourcein Mkn 297 is, respectively, 14.6 and 3.8 times more luminous than thehidden sources in the Antennae (NGC 4038/4039) and Stephan's Quintet.Numerical simulations of the Mkn 297 system indicate that a co-planarradial penetration between two disk galaxies yielded the observed wingformation in the system about 1.5 × 108 years after thecollision. A complex emission pattern with knots and ridges of emissionwas detected with ISOCAM. The 7.7 μm map predominantly shows thegalaxy in emission from the 7.7 μm feature attributed to PAHs(Polycyclic Aromatic Hydrocarbons). The 14.3/7.7 μm ratio is greaterthan unity over most of the galaxy, implying widespread strong starformation. Strong emission features were detected in the ISOPHOTspectrum, while [O I], [O III] and [C II] emission lines were seen withLWS. Using data from the three instruments, luminosities and masses fortwo dust components were determined. The total infrared luminosity isapproximately 10<(11)> Lȯ, which(marginally) classifies the system as a luminous infrared galaxy (LIRG).A supernova that exploded in 1979 (SN 1982aa) gave rise to one of themost powerful known radio remnants which falls close to the strongestmid-infrared source and is identified with star forming region 14 in theoptical. This supernova explosion may have been accompanied by agamma-ray burst (GRB), consistent with the idea that GRBs are associatedwith supernovae in star forming regions, and a search for a GRBconsistent with the direction to Mkn 297, in satellite data from July toDecember 1979, is recommended.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, theNetherlands and the United Kingdom) with the participation of ISAS andNASA

Dust properties of UV bright galaxies at z ~ 2
We investigate the properties of the extinction curve in the rest-frameUV for a sample of 34 UV-luminous galaxies at 2 < z < 2.5,selected from the FORS Deep Field (FDF) spectroscopic survey. A newparametric description of the rest-frame UV spectral energy distributionis adopted; its sensitivity to properties of the stellar populations orof dust attenuation is established with the use of models. The latterare computed by combining composite stellar population models andcalculations of radiative transfer of the stellar and scatteredradiation through the dusty interstellar medium (ISM) for a dust/starsconfiguration describing dust attenuation in local starbursts. In thefavoured configuration the stars are enveloped by a shell with atwo-phase, clumpy, dusty ISM. The distribution of the z ˜ 2UV-luminous FDF galaxies in several diagnostic diagrams shows that theirextinction curves range between those typical of the Small and LargeMagellanic Clouds (SMC and LMC, respectively). For the majority ofstrongly reddened objects having a UV continuum slope β > -0.4 asignificant 2175 Å absorption feature (or "UV bump") is inferred,indicating an LMC-like extinction curve. On the other hand, the UVcontinua of the least reddened objects are mostly consistent withSMC-like extinction curves, lacking a significant UV bump, as for thesample of local starbursts investigated by Calzetti and collaborators.Furthermore, the most opaque (⠘ 0) and, thus (for ourmodels), dustiest UV-luminous FDF galaxies tend to be among the mostmetal-rich, most massive, and largest systems at z ˜ 2, indicating< Z > ˜ 0.5 {-} 1 Zȯ, < Mstars> ˜ 6 × 1010 Mȯ, and ˜ 4 kpc, respectively. The presence of the UVbump does not seem to depend on the total metallicity, as given by theequivalent width (EW) of the C IV doublet. Conversely, it seems to beassociated with a large average EW of the six most prominentinterstellar low-ionisation absorption lines falling in the FORSspectra. The average EW of these saturated lines offers a proxy for theISM topology. We interpret these results as the evidence for adifference in the properties of the dusty ISM among the most evolvedUV-luminous, massive galaxies at z ˜ 2.

ISO observations of the Wolf-Rayet galaxies NGC 5430, NGC 6764, Mrk 309 and VII Zw 19
Observations of four WR galaxies (NGC 5430, NGC 6764, Mrk 309 and VII Zw19) using the Infrared Space Observatory are presented here. ISOCAM mapsof NGC 5430, Mrk 309 and NGC 6764 revealed the location of starformation regions in each of these galaxies. ISOPHOT spectralobservations from 4 to 12 μm detected the ubiquitous PAH bands in thenuclei of the targets and several of the disk star forming regions,while LWS spectroscopy detected [O I] and [C II] emission lines from twogalaxies, NGC 5430 and NGC 6764. Using a combination of ISO and IRASflux densities, a dust model based on the sum of modified blackbodycomponents was successfully fitted to the available data. These modelswere then used to calculate new values for the total IR luminosities foreach galaxy, the size of the various dust populations, and the globalSFR. The derived flux ratios, the SFRs, the high L(PAH)/L(40-120 μm)and F(PAH 7.7 μm)/F(7.7 μm continuum) values suggest that most ofthese galaxies are home to only a compact burst of star formation. Theexception is NGC 6764, whose F(PAH 7.7 μm)/F(7.7 μm continuum)value of 1.22 is consistent with the presence of an AGN, yet theL(PAH)/L(40-120 μm) is more in line with a starburst, a finding inline with a compact low-luminosity AGN dominated by the starburst.

Molecular gas in compact galaxies
New observations of eleven compact galaxies in the 12CO J =2{-}1 and J = 3{-}2 transitions are presented. From these observationsand literature data accurate line ratios in matched beams have beenconstructed, allowing the modelling of physical parameters. Matching asingle gas component to observed line ratios tends to produce physicallyunrealistic results, and is often not possible at all. Much betterresults are obtained by modelling two distinct gas components. In mostobserved galaxies, the molecular gas is warm (Tk = 50{-}150K) and at least partially dense (n(H2) ≥ 3000cm-3). Most of the gas-phase carbon in these galaxies is inatomic form; only a small fraction ( 5%) is in carbon monoxide.Beam-averaged CO column densities are low (of the order of1016 cm-2). However, molecular hydrogen columndensities are high (of the order of 1022 cm-2)confirming large CO-to- H2 conversion factors (typically X =1021{-}1022 cm-2/ {K kms-1}) found for low-metallicity environments by othermethods. From CO spectroscopy, three different types of molecularenvironment may be distinguished in compact galaxies. Type I (highrotational and isotopic ratios) corresponds to hot and dense molecularclouds dominated by star-forming regions. Type II has lower ratios,similar to the mean found for infrared-luminous galaxies in general, andcorresponds to environments engaged in, but not dominated by,star-forming activity. Type III, characterized by low 12CO(2-1)/(1-0) ratios, corresponds to mostly inactive environments ofrelatively low density.

Spectroscopic study of blue compact galaxies. V. Oxygen abundance and the metallicity-luminosity relation
This is the fifth paper in a series studying the stellar components,star formation histories, star formation rates and metallicities of ablue compact galaxy (BCG) sample. Based on our high-quality ground-basedspectroscopic observations, we have determined the electrontemperatures, electron densities, nitrogen abundances and oxygenabundances for 72 star-forming BCGs in our sample, using differentoxygen abundance indicators. The oxygen abundance covers the range 7.15< 12 + log (O/H)< 9.0, and nitrogen is found to be mostly aproduct of secondary nucleosynthesis for 12 + log (O/H)>8.2 andapparently a product of primary nucleosynthesis for 12 + log (O/H)<8.2. To assess the possible systematic differences among differentoxygen abundance indicators, we have compared oxygen abundances of BCGsobtained with the Te method, R23 method, P method,N2 method and O3N2 method. The oxygen abundances derived from theTe method are systematically lower by 0.1-0.25 dex than thosederived from the strong line empirical abundance indicators, consistentwith previous studies based on region samples. We confirm the existenceof the metallicity-luminosity relation in BCGs over a large range ofabundances and luminosities. Our sample of galaxies shows that the slopeof the metallicity-luminosity relation for the luminous galaxies(~-0.05) is slightly shallower than that for the dwarf galaxies(~-0.17). An offset was found in the metallicity-luminosity relation ofthe local galaxies and that of the intermediate redshift galaxies. Itshows that the metallicity-luminosity relation for the emission linegalaxies at high redshift is displaced to lower abundances, higherluminosities, or both.

Cold and warm dust along a merging galaxy sequence
We investigate the cold and warm dust properties during galaxyinteractions using a merging galaxy sample ordered into a chronologicalsequence from pre- to post-mergers. Our sample comprises a total of 29merging systems selected to have far-infrared and submillimetreobservations. The submillimetre data are mainly culled from theliterature, while for five galaxies (NGC 3597, 3690, 6090, 6670 and7252) the submillimetre observations are presented here for the firsttime. We use the 100- to 850-μm flux density ratio,f100/f850, as a proxy for the mass fraction of thewarm and cold dust in these systems. We find evidence for an increase inf100/f850 along the merging sequence from early toadvanced mergers, and interpret this trend as an increase of the warmrelative to the cold dust mass. We argue that the two key parametersaffecting the f100/f850 flux ratio is the starformation rate and the dust content of individual systems relative tothe stars. Using a sophisticated model for the absorption andre-emission of the stellar ultraviolet radiation by dust, we show thatthese parameters can indeed explain both the increase and the observedscatter in f100/f850 along the merging galaxysequence. We also discuss our results under the hypothesis thatelliptical galaxies are formed via disc galaxy mergers.

The distribution of atomic gas and dust in nearby galaxies - III. Radial distributions and metallicity gradients
The radial distribution of dust and gas in 38 nearby galaxies isinvestigated, using a sample of galaxies for which matched resolution(25 arcsec) neutral hydrogen (HI) and 850-μm images are available.Most of these radial profiles are fitted well by an exponential model,and the derived 850-μm scalelengths are proportional to the HIscalelengths. From this relation, it is found that the metallicitygradients of these galaxies are much shallower than previous studies,unless the dust temperature is constant within the disc, or asignificant component of molecular gas exists at large radii that is nottraced by CO observations.

Revised masses of dust and gas of SCUBA Local Universe Survey far-infrared bright galaxies based on a recent CO survey
Recent CO measurements of an essentially complete subsample of galaxiesfrom the SCUBA Local Universe Survey (SLUGS) are used to examine theirimplications for dust and gas masses in this sample. Estimates of dustmasses are affected by a contribution to the SCUBA brightnessmeasurements by CO(3-2) emission, and molecular gas masses by the use ofa modified value of the CO-to-H2 conversion factor X. Theaverage dust mass is reduced by 25-38 per cent, which has no bearing onearlier conclusions concerning the shape of the dust mass luminosityfunction derived from the SLUGS. The value of X found from the COsurvey, when applied together with the reduction in dust masses, leadsto lower estimates for the mean gas-to-dust mass ratios, where the gasincludes both H2 and H I. For the CO sample, the mean globalratio is reduced from approximately 430 to about 320-360, but is furtherreduced to values near 50 when applied to the nuclear regions relevantto the CO observations. We discuss these results and suggest that thedifferences between the nuclear and outer regions may simply reflectdifferences in metallicity or the existence of considerable amounts ofunobserved cold dust in the outer regions of these galaxies.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

The Nature of Nearby Counterparts to Intermediate-Redshift Luminous Compact Blue Galaxies. I. Optical/H I Properties and Dynamical Masses
We present single-dish H I spectra obtained with the Green BankTelescope, along with optical photometric properties from the SloanDigital Sky Survey, of 20 nearby (D<~70 Mpc) luminous compact bluegalaxies (LCBGs). These ~L*, blue, high surface brightness, starburstinggalaxies were selected using the same criteria as were used to defineLCBGs at higher redshifts. We find that these galaxies are gas-rich,with MHI ranging from 5×108 to8×109 Msolar andMHIL-1B ranging from 0.2 to 2Msolar L-1solar, consistent with avariety of morphological types of galaxies. We find that the dynamicalmasses (measured within R25) span a wide range, from 1 to1×1011 Msolar. However, at least half havedynamical mass-to-light ratios smaller than those of nearby galaxies ofall Hubble types, as found for LCBGs at intermediate redshifts. Bycomparing line widths and effective radii with local galaxy populations,we find that LCBGs are consistent with the dynamical mass properties ofMagellanic (low luminosity) spiral galaxies and the more massiveirregular and dwarf elliptical galaxies, such as NGC 205.

A Deep K-Band Photometric Survey of Merger Remnants
We present K-band photometry for 51 candidate merger remnants to assessthe viability of whether spiral-spiral mergers can produce bona fideelliptical galaxies. Using both the de Vaucouleurs r1/4 andSérsic r1/n fitting laws, it is found that the stellarcomponent in a majority of the galaxies in the sample has undergoneviolent relaxation. However, the sample shows evidence for incompletephase mixing. The analysis also indicates the presence of ``excesslight'' in the surface brightness profiles of nearly one-third of themerger remnants. Circumstantial evidence suggests that this is due tothe effects of a starburst induced by the dissipative collapse of thegas. The integrated light of the galaxies also shows that mergers canmake L* elliptical galaxies, in contrast to earlier infrared studies.The isophotal shapes and related structural parameters are alsodiscussed, including the fact that 70% of the sample show evidence fordisky isophotes. The data and results presented are part of a largerphotometric and spectroscopic campaign to thoroughly investigate a largesample of mergers in the local universe.

Spectroscopic study of blue compact galaxies. IV. Star formation rates and gas depletion timescales
This is the fourth paper in a series studying star formation rates,stellar components, metallicities, and star formation histories of ablue compact galaxy (BCG) sample. Using Hα, [O II]λ3727,infrared (IR), radio (1.4 GHz) luminosities and neutral hydrogen (H I)gas masses, we estimated star formation rates and gas depletiontimescales of 72 star-forming BCGs. The star formation rates of the BCGsin our sample span nearly four orders of magnitude, from approximately10-2 to 102 Mȯ yr-1,with a median star formation rate of about 3 Mȯyr-1. The typical gas depletion timescale of BCGs is aboutone billion years. Star formation could be sustained at the currentlevel only on a timescale significantly lower than the age of theuniverse before their neutral gas reservoir is completely depleted. Toassess the possible systematic differences among different starformation rate indicators, we compared the star formation rates derivedfrom Hα, [O II]λ3727, IR, and radio luminosities, andinvestigated the effects from underlying stellar absorption and dustextinction. We found that subtracting underlying stellar absorption isvery important to calculate both dust extinction and star formation rateof galaxies. Otherwise, the intrinsic extinction will be overestimated,the star formation rates derived from [O II]λ3727 and Hαwill be underestimated (if the underlying stellar absorption and theinternal extinction were not corrected from the observed luminosity) oroverestimated (if an overestimated internal extinction were used forextinction correction). After both the underlying stellar absorption andthe dust extinction were corrected, a remarkably good correlationemerges among Hα, [O II]λ3727, IR and radio star formationrate indicators. Finally, we find a good correlation between themeasured star formation rate and the absolute blue magnitude,metallicity, interstellar extinction of BCGs. Our results indicate thatfaint, low-mass BCGs have lower star formation rates.Star formation rates and gas depletion timescales of BCGs are availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/425/417

The ISOPHOT 170 μm Serendipity Survey II. The catalog of optically identified galaxies%
The ISOPHOT Serendipity Sky Survey strip-scanning measurements covering≈15% of the far-infrared (FIR) sky at 170 μm were searched forcompact sources associated with optically identified galaxies. CompactSerendipity Survey sources with a high signal-to-noise ratio in at leasttwo ISOPHOT C200 detector pixels were selected that have a positionalassociation with a galaxy identification in the NED and/or Simbaddatabases and a galaxy counterpart visible on the Digitized Sky Surveyplates. A catalog with 170 μm fluxes for more than 1900 galaxies hasbeen established, 200 of which were measured several times. The faintest170 μm fluxes reach values just below 0.5 Jy, while the brightest,already somewhat extended galaxies have fluxes up to ≈600 Jy. For thevast majority of listed galaxies, the 170 μm fluxes were measured forthe first time. While most of the galaxies are spirals, about 70 of thesources are classified as ellipticals or lenticulars. This is the onlycurrently available large-scale galaxy catalog containing a sufficientnumber of sources with 170 μm fluxes to allow further statisticalstudies of various FIR properties.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, TheNetherlands and the UK) and with the participation of ISAS and NASA.Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) areMPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena,Imperial College London.Full Table 4 and Table 6 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/422/39

Dust masses and star formation in bright IRAS galaxies. Application of a physical model for the interpretation of FIR observations
We address the problem of modeling the far-infrared (FIR) spectrum andderiving the star-formation rate (SFR) and the dust mass of spiralgalaxies. We use the realistic physical model of Popescu et al.(\cite{popescu}) to describe the overall ultra-violet (UV), optical andFIR spectral energy distribution (SED) of a spiral galaxy. The modeltakes into account the 3-dimensional old and young stellar distributionsin the bulge and the disk of a galaxy, together with the dust geometry.The geometrical characteristics of the galaxy and the intrinsic opticaland near-infrared spectra are determined by the galaxy's observed K-bandphotometry. The UV part of the spectrum is assumed to be proportional tothe SFR through the use of population synthesis models. By solving theradiative transfer equation, we are able to determine the absorbedenergy, the dust temperature and the resulting FIR spectrum. The modelhas only three free parameters: SFR, dust mass, and the fraction of theUV radiation which is absorbed locally by dense dust in the HII regions.Using this model, we are able to fit well the FIR spectra of 62 brightIRAS galaxies from the ``SCUBA Local Universe Galaxy Survey" of Dunne etal. (\cite{dunne1}). As a result, we are able to determine, amongothers, their SFR and dust mass. We find that, on average, the SFR (inabsolute units), the star-formation efficiency, the SFR surface densityand the ratio of FIR luminosity over the total intrinsic luminosity, arelarger than the respective values of typical spiral galaxies of the samemorphological type. We also find that the mean gas-to-dust mass ratio isclose to the Galactic value, while the average central face-on opticaldepth of these galaxies in the V band is 2.3. Finally, we find a strongcorrelation between SFR or dust mass and observed FIR quantities liketotal FIR luminosity or FIR luminosity at 100 and 850 μm. Thesecorrelations yield well-defined relations, which can be used todetermine a spiral galaxy's SFR and dust-mass content from FIRobservations.

Starbursts in barred spiral galaxies. VI. HI observations and the K-band Tully-Fisher relation
This paper reports a study of the effect of a bar on the neutralhydrogen (HI) content of starburst and Seyfert galaxies. We also makecomparisons with a sample of ``normal'' galaxies and investigate howwell starburst and Seyfert galaxies follow the fundamental scalingTully-Fisher (TF) relation defined for normal galaxies. 111 Markarian(Mrk) IRAS galaxies were observed with the Nançay radiotelescope,and HI data were obtained for 80 galaxies, of which 64 are newdetections. We determined the (20 and 50%) linewidths, the maximumvelocity of rotation and total HI flux for each galaxy. Thesemeasurements are complemented by data from the literature to form asample of Mrk IRAS (74% starburst, 23% Seyfert and 3% unknown) galaxiescontaining 105 unbarred and 113 barred ones. Barred galaxies have lowertotal and bias-corrected HI masses than unbarred galaxies, and this istrue for both Mrk IRAS and normal galaxies. This robust result suggeststhat bars funnel the HI gas toward the center of the galaxy where itbecomes molecular before forming new stars. The Mrk IRAS galaxies havehigher bias-corrected HI masses than normal galaxies. They also showsignificant departures from the TF relation, both in the B and K bands.The most deviant points from the TF relation tend to have a strongfar-infrared luminosity and a low oxygen abundance. These resultssuggest that a fraction of our Mrk IRAS galaxies are still in theprocess of formation, and that their neutral HI gas, partly of externalorigin, has not yet reached a stationary state.Based on observations obtained at the large radiotelescope ofObservatoire de Nançay, operated by Observatoire de Paris.Tables 5 and 6 are only (and Table 4 also) available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/515

A joint mid-infrared spectroscopic and X-ray imaging investigation of LINER galaxies
We present a comprehensive comparative high resolution mid-IRspectroscopic and X-ray imaging investigation of LINERs using archivalobservations from the ISO-SWS and the Chandra Advanced CCD ImagingSpectrometer. Although the sample is heterogenous and incomplete, thisis the first comprehensive study of the mid-infrared fine structure lineemission of LINERs. These results have been compared with similarobservations of starburst galaxies and AGN. We find that LINERs veryclearly fall between starbursts and AGN in their mid-IR fine structureline spectra, showing L[OIV]26 μm/LFIR andL[OIV]26 μm/L[NeII]12.8 μm ratios, bothmeasures of the dominant nuclear energy source in dust-enshroudedgalaxies, intermediate between those of AGN and starbursts. Chandraimaging observations of the LINERs reveal hard nuclear point sourcesmorphologically consistent with AGN in most (67%) of the sample, with aclear trend with IR-brightness. Most LINERs that show a single dominanthard compact X-ray core are IR-faint (LFIR/LB <1), whereas most LINERs that show scattered X-ray sources are IR-bright.A comparative X-ray/mid-IR spectroscopic investigation of LINERs revealssome puzzling results. Objects that display strong hard nuclear X-raycores should also display high excitation lines in the IR. However, wefind two LINERs disagree with this expectation. The galaxy NGC 404 showsweak soft X-ray emission consistent with a starburst but has the mostprominent highest excitation mid-IR spectrum of our entire sample. UsingIR emission line diagnostics alone, this galaxy would be classified ashosting a dominant AGN. Conversely, the IR luminous LINER NGC 6240 hasan extremely luminous binary AGN as revealed by the X-rays but showsweak IR emission lines. With the advent of SIRTF, and future IR missionssuch as Herschel and JWST, it is increasingly critical to determine theorigin of these multiwavelength anomalies.Table 2 is also available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/825Table 3 is only available in electronic form athttp://www.edpsciences.org

The evolution of stars and gas in starburst galaxies
In systems undergoing starbursts the evolution of the young stellarpopulation is expected to drive changes in the emission-line properties.This evolution is usually studied theoretically, with a combination ofevolutionary synthesis models for the spectral energy distribution ofstarbursts and photoionization calculations. In this paper we present amore empirical approach to this issue. We apply empirical populationsynthesis techniques to samples of starburst and HII galaxies in orderto measure their evolutionary state and correlate the results with theiremission-line properties. A couple of useful tools are introduced thatgreatly facilitate the interpretation of the synthesis: (1) anevolutionary diagram, the axes of which are the strengths of the young,intermediate age and old components of the stellar population mix; and(2) the mean age of stars associated with the starburst, . These toolsare tested with grids of theoretical galaxy spectra and found to workvery well even when only a small number of observed properties(absorption-line equivalent widths and continuum colours) is used in thesynthesis.Starburst nuclei and HII galaxies are found to lie on a well-definedsequence in the evolutionary diagram. Using the empirically defined meanstarburst age in conjunction with emission-line data, we have verifiedthat the equivalent widths of Hβ and [OIII] decrease for increasing. The same evolutionary trend was identified for line ratios indicativeof the gas excitation, although no clear trend was identified formetal-rich systems. All these results are in excellent agreement withlong-known, but little tested, theoretical expectations.

The PDS versus Markarian starburst galaxies: comparing strong and weak IRAS emitter at 12 and 25 μm in the nearby Universe
The characteristics of the starburst galaxies from the Pico dos Diassurvey (PDS) are compared with those of the nearby ultraviolet (UV)bright Markarian starburst galaxies, having the same limit in redshift(vh < 7500 km s-1) and absolute B magnitude(MB < -18). An important difference is found: theMarkarian galaxies are generally undetected at 12 and 25 μm in IRAS.This is consistent with the UV excess shown by these galaxies andsuggests that the youngest star-forming regions dominating thesegalaxies are relatively free of dust.The far-infrared selection criteria for the PDS are shown to introduce astrong bias towards massive (luminous) and large size late-type spiralgalaxies. This is contrary to the Markarian galaxies, which are found tobe remarkably rich in smaller size early-type galaxies. These resultssuggest that only late-type spirals with a large and massive disc arestrong emitters at 12 and 25 μm in IRAS in the nearby Universe.The Markarian and PDS starburst galaxies are shown to share the sameenvironment. This rules out an explanation of the differences observedin terms of external parameters. These differences may be explained byassuming two different levels of evolution, the Markarian being lessevolved than the PDS galaxies. This interpretation is fully consistentwith the disc formation hypothesis proposed by Coziol et al. to explainthe special properties of the Markarian SBNG.

Evolutionary spectral energy distribution diagnostics of starburst galaxies: signature of bimodality
We construct an evolutionary spectral energy distribution (SED) model ofa starburst region, from the ultraviolet to submillimetre wavelengths.This model allows us to derive the star formation rate, optical depth bydust and apparent effective radius of starburst regions at variouswavelengths; as a result, the intrinsic surface brightness of starburstregions can be derived. Using this SED model, we analyse 16ultraviolet-selected starburst galaxies and 10 ultraluminous infraredgalaxies. The derived star formation rates and optical depths arecompared with emission-line measurements and are found to be consistent.The derived apparent effective radii are also consistent withobservations. From the SED analysis, we find a bimodal property of thestar formation rate with the optical depth and the compactness ofstellar distributions. While mild starbursts have a limiting intrinsicsurface brightnessLbolr-2e~= 1012Lsolar kpc-2, intense starbursts tend to be moreheavily obscured and concentrated within a characteristic scale ofre~= 0.3 kpc. We suggest that the mild starbursts can betriggered by a self-gravitating disc instability in which feedback iseffective in the shallow gravitational potential. On the other hand, theintense starbursts can be induced via an external dynamical perturbationsuch as galaxy merging, in which feedback is less effective owing to thedeep gravitational potential attained by the large gas concentrationwithin the central starburst region.

An X-Ray Atlas of Groups of Galaxies
A search was conducted for a hot intragroup medium in 109 low-redshiftgalaxy groups observed with the ROSAT PSPC. Evidence for diffuse,extended X-ray emission is found in at least 61 groups. Approximatelyone-third of these detections have not been previously reported in theliterature. Most of the groups are detected out to less than half of thevirial radius with ROSAT. Although some spiral-rich groups do contain anintragroup medium, diffuse emission is restricted to groups that containat least one early-type galaxy.

Deep Near-Infrared Mapping of Young and Old Stars in Blue Compact Dwarf Galaxies
We analyze J, H, and Ks near-infrared data for nine bluecompact dwarf (BCD) galaxies, selected from a larger sample that we havealready studied in the optical. We present contour maps, surfacebrightness and color profiles, and color maps of the sample galaxies.The morphology of the BCDs in the near-infrared (NIR) has been found tobe basically the same as in the optical. The inner regions of thesesystems are dominated by the starburst component. At low surfacebrightness levels the emission is due to the underlying host galaxy; thelatter is characterized by red, radially constant colors and isophoteswell fitted by ellipses. We derive accurate optical-NIR host galaxycolors for eight of the sample galaxies; these colors are typical of anevolved stellar population. Interestingly, optical-NIR color maps revealthe presence of a complex, large-scale absorption pattern in three ofthe sample galaxies. We study the applicability of the Sérsic lawto describe the surface brightness profiles of the underlying hostgalaxy and find that, because of the limited surface brightness intervalover which the fit can be made, the derived Sérsic parameters arevery sensitive to the selected radial interval and to errors in the skysubtraction. Fitting an exponential model gives generally more stableresults and can provide a useful tool to quantify the structuralproperties of the host galaxy and compare them with those of other dwarfclasses, as well as with those of star-forming dwarfs at higherredshifts.

CO Molecular Gas in Infrared-luminous Galaxies
We present the first statistical survey of the properties of the12CO(1-0) and 12CO(3-2) line emission from thenuclei of a nearly complete subsample of 60 infrared (IR) luminousgalaxies selected from SCUBA Local Universe Galaxy Survey (SLUGS). Thissubsample is flux limited at S60μm>=5.24 Jy with far-IR(FIR) luminosities mostly at LFIR>1010Lsolar. We compare the emission line strengths of12CO(1-0) and (3-2) transitions at a common resolution of~15". The measured 12CO(3-2) to (1-0) line intensity ratiosr31 vary from 0.22 to 1.72, with a mean value of 0.66 for thesources observed, indicating a large spread of the degree of excitationof CO in the sample. These CO data, together with a wide range of dataat different wavelengths obtained from the literature, allow us to studythe relationship between the CO excitation conditions and the physicalproperties of gas/dust and star formation in the central regions ofgalaxies. Our analysis shows that there is a nonlinear relation betweenCO and FIR luminosities, such that their ratioLCO/LFIR decreases linearly with increasingLFIR. This behavior was found to be consistent with theSchmidt law relating star formation rate to molecular gas content, withan index N=1.4+/-0.3. We also find a possible dependence of the degreeof CO gas excitation on the efficiency of star-forming activity. Usingthe large velocity gradient (LVG) approximation to model the observeddata, we investigate the CO-to-H2 conversion factor X for theSLUGS sample. The results show that the mean value of X for the SLUGSsample is lower by a factor of 10 compared to the conventional valuederived for the Galaxy, if we assume the abundance of CO relative toH2, ZCO=10-4. For a subset of 12galaxies with H I maps, we derive a mean total face-on surface densityof H2+HI of about 42 Msolar pc-2 withinabout 2 kpc of the nucleus. This value is intermediate between that ingalaxies like our own and those with strong star formation.

The IRAS Revised Bright Galaxy Sample
IRAS flux densities, redshifts, and infrared luminosities are reportedfor all sources identified in the IRAS Revised Bright Galaxy Sample(RBGS), a complete flux-limited survey of all extragalactic objects withtotal 60 μm flux density greater than 5.24 Jy, covering the entiresky surveyed by IRAS at Galactic latitudes |b|>5°. The RBGS includes629 objects, with median and mean sample redshifts of 0.0082 and 0.0126,respectively, and a maximum redshift of 0.0876. The RBGS supersedes theprevious two-part IRAS Bright Galaxy Samples(BGS1+BGS2), which were compiled before the final(Pass 3) calibration of the IRAS Level 1 Archive in 1990 May. The RBGSalso makes use of more accurate and consistent automated methods tomeasure the flux of objects with extended emission. The RBGS contains 39objects that were not present in the BGS1+BGS2,and 28 objects from the BGS1+BGS2 have beendropped from RBGS because their revised 60 μm flux densities are notgreater than 5.24 Jy. Comparison of revised flux measurements forsources in both surveys shows that most flux differences are in therange ~5%-25%, although some faint sources at 12 and 25 μm differ byas much as a factor of 2. Basic properties of the RBGS sources aresummarized, including estimated total infrared luminosities, as well asupdates to cross identifications with sources from optical galaxycatalogs established using the NASA/IPAC Extragalactic Database. Inaddition, an atlas of images from the Digitized Sky Survey with overlaysof the IRAS position uncertainty ellipse and annotated scale bars isprovided for ease in visualizing the optical morphology in context withthe angular and metric size of each object. The revised bolometricinfrared luminosity function, φ(Lir), forinfrared-bright galaxies in the local universe remains best fit by adouble power law, φ(L)~Lα, withα=-0.6(+/-0.1) and α=-2.2(+/-0.1) below and above the``characteristic'' infrared luminosityL*ir~1010.5Lsolar,respectively. A companion paper provides IRAS High Resolution (HIRES)processing of over 100 RBGS sources where improved spatial resolutionoften provides better IRAS source positions or allows for deconvolutionof close galaxy pairs.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Hercules
Right ascension:16h05m13.20s
Declination:+20°32'32.0"
Aparent dimensions:0.776′ × 0.589′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 6052
HYPERLEDA-IPGC 57039

→ Request more catalogs and designations from VizieR